Аааааа)))) Прям четкая реинкарнация слов Карлина: "Потому что люди, блять, тупые!..."))))
История о том, как проблемы с математикой погубили большой бургер.
Вот уже несколько десятилетий одним из самых популярных блюд в меню McDonald’s является Quarter Pounder (четвертьфунтовый бургер).
И хотя число потребителей неуклонно растёт с тех пор, как появился первый бургер, каждая попытка увеличить его размеры терпит неудачу из-за человеческой глупости.
Quarter Pounder был изобретён, когда владелец франшизы McDonald’s по имени Эл Бернардин заметил, что стандартный гамбургер McDonald’s обладает «ужасным соотношением мяса к булочке».
Бернардин решил эту проблему, разработав новую котлету для ресторана, которая содержала целую четверть фунта говядины.
Он поместил её между двумя частями булочки и добавил в меню под названием Quarter Pounder. Данная идея может показаться вам неоригинальной.
Однако компания McDonald’s умудрилась запатентовать термин “Quarter Pounder” (четвертьфунтовый бургер) и может подать в суд на любого, кто решит им воспользоваться.
Следует уточнить, что хотя Mcdonald's и владеет термином “Quarter Pounder”, эта идея не принадлежит ей. Любой ресторан может сделать бургер с котлетой весом четверть фунта, однако он не имеет права называть его Quarter Pounder, если только не пожелает иметь дело с Mcdonald's.
Многие компании пытались создать собственную версию Quarter Pounder с разными результатами, и есть те, кто попытался превзойти его и потерпел неудачу.
Многочисленные конкуренты – и даже сама компания Mcdonald's – пытались создать бургер с котлетой, которая весила бы 1/3 фунта, однако конечный продукт всегда с треском проваливался.
Например, в 1980-х годах A&W попыталась превзойти Mcdonald's, выпустив A&W Third Pounder.
Все понимали, что бургер был разработан, чтобы стать непосредственным конкурентом Quarter Pounder. A&W продавал его по той же цене, что и четвертьфунтовый, а в некоторых местах он стоил ещё дешевле.
Кроме того, A&W провела много тестов, которые почти все подтвердили, что среднестатистический человек с улицы предпочитает их бургеры. Однако A&W Third Pounder всё равно не продавался. Компания не могла понять, почему никто не хочет покупать его.
Тогда она заказала десятки тестов, чтобы узнать, что, чёрт возьми, происходит, и была сбита с толку, обнаружив, что все считали гамбургер A&W Third Pounder меньше Quarter Pounder.
Клиенты почему-то думали, что если 3 меньше 4, значит, и сам бургер был меньшего размера.
Следовательно, цена казалась им невыгодной.
Если вы ещё не утратили веру в человечество и надеетесь, что таких было меньшинство, что ж, спешим вас огорчить: согласно отчётам тех, кто проводил тесты, более 50% респондентов считали, что 1/3 меньше 1/4.
Вскоре после этого A&W убрала бургер из меню, очевидно, потому, что руководители не смогли найти способ убедить клиентов, что Third Pounder был больше, чем Quarter Pounder, и не назвать их тупыми.
Но на этом история не заканчивается. McDonald’s несколько раз пыталась ввести бургер с котлетой весом 1/3 фунта, но каждый раз терпела неудачу по той же самой причине.
Удивительно!
В Бруклине, в математической школе для одарённых детей шёл урок алгебры. Это был класс учеников выше среднего уровня во всех отношениях — как в смысле их возраста, так и в смысле их прогресса в освоении наук. У мальчиков начинал ломаться голос, девочки начинали брить подмышки, и все они шагнули в постижении математики так далеко, что наизусть знали таблицу умножения до четырёх. Теперь они с упоением погружались в холодные глубины алгебры. Они уже усвоили, что если a = b, то b = a, и это придавало им чувство избранности и приближения к абсолютной истине.
Учитель был полноватый, средних лет мужчина с матовой плешью, грустными бесцветными глазами и тяжёлым русским акцентом. Он страстно любил математику и надеялся, что эта страсть передастся кому-нибудь из его одарённых недоумков. Ученики почтительно называли его мистер Зайтлайн, а друзья запросто — Борька Цейтлин (о чём ученики, разумеется, не знали).
К середине урока, когда мальчикам надоело играть в морской бой, а девочкам надоело красить ногти, учитель неожиданно сказал нечто такое, что привлекло их внимание.
— Сейчас, — сказал учитель, — я вам докажу, что два равно одному.
Класс затих, и учитель, воспользовавшись паузой, добавил:
— Тот, кто найдёт ошибку в моём доказательстве, получит «А».
Класс молчал, напуганный неожиданным вызовом. В наступившей тишине раздался писклявый голос отличницы Брехман:
— Мистер Зайтлайн, по-моему, два не равно одному. Два больше.
— Правильно, — сказал учитель. — Отличное наблюдение. Два действительно больше, чем один. Но вы должны это доказать, то есть опровергнуть моё доказательство. Понятно? Итак, начнём. Для начала, предположим, что «а» равно «бэ».
Он повернулся к доске и написал: а = b.
— Откуда вы знаете? — раздался с задней парты ломающийся голос отличника Гойскера.
— Откуда я знаю что?
— Что «а» равно «бэ».
— Прекрасный вопрос, — кисло сказал учитель. — Я не знаю. Но я допустил. Если вы заметили, я сказал: предположим, что «а» равно «бэ».
— Предположим, что директора на завуча положим, — сказал отличник Рабунский, обводя класс победным взором.
Класс взорвался от хохота. Директор школы был пожилой мужчина, завуч — молодая женщина, так что класс по достоинству оценил остроту Рабунского.
Дождавшись, когда ученики успокоятся, учитель продолжал:
— Умножаем обе части уравнения на «а». Получается...
Он написал: a x a = a х b, то есть a2 = ab. Класс молчал.
— Отнимаем от обеих частей уравнения «бэ»-квадрат, — сказал учитель и написал: a2 — b2 = ab — b2. Класс молчал.
— А теперь… — сказал учитель, не в силах сдержать счастливой улыбки, — кто может сказать, что мы теперь делаем?
— Идём домой смотреть хоккей, — сказал отличник Рабунский. — Он явно был сегодня в ударе.
— Правильно, — сказал учитель. — Но не сейчас. До конца урока ещё пятнадцать минут. А пока продолжим доказательство. Что у нас в левой части уравнения? Разность квадратов члена «а» и члена «бэ», правильно? Чему равна разность квадратов? Она равна произведению суммы членов на их разность. А что в правой части? Общий множитель «бэ», который мы выносим за скобки. Преобразуем уравнение. Получается...
Он написал: (a + b) (a — b) = b (a — b).
— Понятно?
— Понятно, сказал остряк Рабунский. — Линда Брехман любит сумму членов Алана и Боба.
Класс потряс новый взрыв ликования. Учитель понял, что на этот раз не дождётся тишины. В его распоряжении оставалось шесть минут.
— Сокращаем обе части уравнения на «а» минус «бэ», — прокричал он, перекрывая ликующий гогот. — Получается...
Он написал: a + b = b.
Гогот не стихал. Учитель продолжал писать, одновременно выкрикивая:
— Так как «а» и «бэ» равны, заменяем в левой части «а» на «бэ». Получатся...
Он написал: b + b = b, то есть 2b = b.
— Сокращаем на «бэ». Получается: 2 = 1.
Последнюю строчку, стуча мелом по доске, он написал крупными цифрами и подчеркнул. Класс замолк, испуганно глядя на доску. Даже хулиган Рабунский на время притих. Учитель сказал, не скрывая своего торжества:
— Ну, кто может найти ошибку в доказательстве?
Отличница Линда Брехман подняла руку и сказала:
— Я знаю, где ошибка. Ошибка заключается в том, что на самом деле два не равно одному.
Учитель погрустнел.
— Правильно, Линда — сказал он со вздохом. — Ты это уже говорила. Конечно, они не равны. Значит, в моём доказательстве есть ошибка. И вы должны её найти.
В разговор неожиданно вмешался отличник Гойскер:
— Мистер Зайтлайн, если в доказательстве есть ошибка, зачем вы нам его показываете? Мы пришли сюда учить правильную математику, а не ошибочную.
— Замечательная мысль, — сказал учитель. — Это такое упражнение. Шутка. Если вы найдёте ошибку, вы будете знать, как её избежать в вашей дальнейшей жизни.
Прозвенел звонок, и ученики ринулись на выход. В классе осталась одна отличница Брехман.
— Мистер Зайтлайн, — сказала она, подойдя к учителю, — это очень странно, что два равно одному. Это правда шутка?
— Правда.
— А в чём ошибка вашего доказательства? В том, что на самом деле «а» и «бэ» не равны?
— Равны, равны, — сказал учитель, собирая портфель.
— Тогда в чём ошибка? Скажите по секрету, мистер Зайтлайн. Я никому не скажу, что вы мне сказали.
— Не могу, Линда. Это будет нечестно по отношению к остальным ученикам.
— Ну, пожалуйста, мистер Зайтлайн! Я же никому не скажу!
— Извини, Линда, не могу.
— Какой вы вредный! — сквозь слёзы пропищала отличница Брехман. — Я на вас пожалуюсь моему папе.
Она выскочила из класса, демонстративно хлопнув дверью.
Следующий день прошёл спокойно. Ни учитель, ни отличники не вспоминали о вчерашней коварной теореме. В конце дня учителя вызвал директор школы.
— Привет, Борис, присаживайся, — сказал он. — Слушай, что у тебя вчера произошло в классе? Мне звонили несколько обеспокоенных родителей. Они говорят, что ты травмируешь детей.
— Вчера? — переспросил учитель, пытаясь вспомнить, что такого страшного он вчера натворил. — А, да! Я им доказал, что два равно одному.
— Ты с ума сошёл! — испугался директор. — Как можно такие вещи доказывать несовершеннолетним детям! Ведь на самом деле два гораздо больше, чем один!
— Я знаю, что больше. Это была шутка. Я хотел проверить их знания основ математики.
— Ты им сказал, что это шутка?
— Сказал.
— Ну, тогда ладно, — директор с облегчением перевёл дух. — Ты смотри, будь осторожен. А то нас засудят.
Прошло ещё две недели, и опасная математическая шутка была окончательно забыта. Никто из отличников (а все ученики этой школы были отличниками) не вспомнил о ней и не попытался её разоблачить, чтобы получить «А». На третью неделю учителя снова вызвал директор школы. Он был мрачен, как похоронное бюро. Закрыв дверь кабинета, он предложил учителю сесть и швырнул перед ним письмо на плотной, палевого цвета бумаге. Письмо было из местной юридической фирмы «Оркин, Соркин и Дворкин». Оно гласило:
«Наша компания представляет интересы родителей учеников вашей школы. В связи с инцидентом, произошедшим недавно в седьмом классе на уроке математики, мы бы хотели встретиться с учителем, мистером Зайтлайном, чтобы получить его показания о вышеупомянутом инциденте. Вы можете назначить день и время встречи. Искренне ваш — А.Оркин».
Мистер Оркин явился на следующий день после окончания уроков. Его сопровождали Соркин, Дворкин и две секретарши. Интервью проходило в кабинете директора. Вопросы задавал самый молодой, мистер Дворкин. Остальные молча записывали. Для начала мистер Дворкин уточнил имя, фамилию, адрес и год рождения учителя. Затем он сказал:
— Мистер Зайтлайн, повторите, пожалуйста, что вы объявили ученикам на уроке математики пятого октября?
— Что два равно одному.
— Известно ли вам, что на самом деле два не равно одному?
— Почему вы так думаете?
— Мистер Зайтлайн, позвольте, я буду задавать вопросы. Признаёте ли вы, что преднамеренно ввели своих учеников в заблуждение?
— Я их никуда не вводил. Я просто доказал, что два равно одному.
— Каким образом вы это доказали?
Учитель взял лист бумаги и в течение минуты повторил злосчастную теорему. Под конец он лихо сократил обе части уравнения на «бэ», написал 2 = 1 и, не моргнув глазом, подчеркнул эту непристойность. Три юриста и две секретарши тщательно переписали бесстыжие выкладки учителя. Воцарилось тяжёлое молчание.
— Это шутка, — сказал учитель. — Это, как бы, упражнение. В моём доказательстве содержится ошибка, которую ученики должны были найти.
Адвокаты молчали, не глядя друг на друга.
— Я могу объяснить, в чём она заключается, — заискивающе сказал учитель.
— Не надо, — сказал мистер Дворкин. — Ученики задавали вам вопросы?
— Да. Гойскер спросил, откуда я знаю, что «а» равно «бэ».
— Что вы на это ответили?
— Что это моё предположение.
— Так. На чём оно было основано?
— Что — «оно»?
— Ваше предположение. Какие у вас были основания предполагать, что «а» равно «бэ»?
Учитель с мольбой посмотрел на директора. Директор отвернулся к окну и стал глядеть во двор, откуда неслись счастливые вопли отличников, играющих в софтбол.
— Продолжим, — сказал мистер Дворкин. — Как отреагировали ученики на ваше безосновательное предположение, за которым, как и ожидалось, последовало ошибочное доказательство?
— Рабунский сказал: предположим, что директора на завуча положим.
Директор заёрзал на стуле и сказал:
— Мои отношения с миссис Лифшиц являются чисто деловыми и основываются исключительно на интересах школы и её учащихся. Высокое качество образования, которое...
— Хорошо, — сказал мистер Дворкин. — Что ещё говорили ученики?
— Ещё Рабунский сказал, что Линда Брехман любит сумму членов Алана и Боба.
Две секретарши ниже склонились к своим блокнотам.
— Понятно, — сказал мистер Дворкин. — Реакция класса показывает, что дети были травмированы вашим безответственным доказательством. Родители учеников рассказали, что в этот день дети пришли из школы в подавленном состоянии, бледные, весь вечер плохо ели и долго не ложились спать. Многим родителям пришлось обратиться к помощи психологов и психиатров. Что вы можете на это сказать, мистер Зайтлайн?
— Что они врут, — вяло сказал учитель.
— Борис, ты с ума сошёл — сказал директор по-русски. И перейдя на английский, добавил: — Мистер Зайтлайн хотел сказать, что ученики побледнели оттого, что напряжённо думали над задачей, которую он им предложил с целью повышения их уровня знаний математики.
Мистер Дворкин хотел открыть рот, но его неожиданно перебил до сих пор молчавший мистер Соркин.
— В чём была ошибка? — спросил он, не проявляя эмоций.
— В том, — сказал учитель, заметно оживляясь, — что в шестой строчке мы сокращаем обе части уравнения на «а» минус «бэ», что, по определению, равно нулю. А на ноль делить нельзя. Ученики должны это знать.
— Что значит «нельзя»? — мистер Дворкин снова взял дело в свои руки. — Мистер Зайтлайн, мы живём в свободной стране.
— Понимаете, — сказал учитель, — есть закон, не позволяющий делить на ноль. А то получится бесконечность или вообще чёрт знает что.
— Закон? — переспросил мистер Дворкин. — Это закон штатный или федеральный? Он принят конгрессом? Вы знаете его номер и дату вступления в силу?
— Нет, но...
— Мистер Зайтлайн, — снисходительно сказал мистер Дворкин. — Можете не объяснять. Мы с мистером Оркиным и мистером Соркиным разбираемся в законах.
На этом интервью закончилось. Мистеры Оркин, Соркин и Дворкин с двумя секретаршами покинули кабинет. Директор сказал:
— Борис, ты понимаешь, что ты наделал?
— Я могу покаяться, если надо, — сказал учитель — Хочешь, я публично признаю, что два не равно одному?
— Теперь уже не поможет.
Через два дня в «Нью-Йорк Таймс» появилась статья под названием «Проблемы нашей системы образования — наследие республиканцев». Статья была посвящена инциденту в бруклинской математической школе. «Злосчастный эпизод, произошедший в Бруклине, — говорилось в статье, — является прямым результатом недостаточного финансирования наших школ в период администрации Буша. Если бы сегодня каждая школьная парта была оборудована современным компьютером с доступом к высокоскоростному интернету, ученики могли бы сами убедиться в том, что на самом деле два не равно одному».
Учителя уволили, и о нём больше никто не вспоминал. Говорили, что он запил и пошёл в частную женскую школу преподавать бокс. Тем временем, буря не стихала. Фирма «Оркин, Соркин и Дворкин» от имени родителей травмированных учеников возбудила гражданский иск против школы на сумму шесть миллионов долларов. После долгих переговоров с адвокатом школы стороны решили не доводить дело до суда и согласились на сумму в два миллиона. Из них полтора миллиона наличными причитались фирме «Оркин, Соркин и Дворкин» и полмиллиона — истцам, то есть родителям пострадавших учеников — в виде купонов на десятипроцентную скидку в местных супермаркетах.
Директор школы пригласил родителей на собрание.
— Дамы и господа! — сказал он. — Поздравляю вас с успешным завершением иска против школы. Ваша победа в этом процессе ещё раз подтверждает справедливость нашей системы правосудия. К сожалению, школа не располагает бюджетом, который позволил бы нам выплатить два миллиона долларов. Мы вынуждены будем объявить банкротство, закрыть школу и уволить учителей. Однако, если вы хотите, чтобы ваш ребёнок продолжал получать образование в нашей школе, вы можете взять на себя оплату иска, что составит восемьдесят тысяч долларов на каждую семью. Вопросы есть?
— Есть, — сказал мистер Брехман, — Нельзя ли разделить сумму иска пополам, с тем, чтобы один миллион оплатили родители и один — школа?
— Боюсь, что нет, — директор вздохнул. — Один миллион для школы так же недостижим, как два миллиона. Как видите, в данном случае, два таки равно одному. Ещё раз поздравляю с победой!
> — Боюсь, что нет, — директор вздохнул. — Один миллион для школы так же недостижим, как два миллиона. Как видите, в данном случае, два таки равно одному. Ещё раз поздравляю с победой!
>
> Аплодисментов не последовало.
А потом ещё оказывается, что 1-дюймовая резьба имеет внешний диаметр 33 мм, а внутренний - 31 мм
Вот эту херь я вообще не понимаю.
Откуда, блядь, взялось 33, если 1 дюйм=25,4 ?!
А резьба, диаметры которой 24,5 - 26,4 это 3/4 дюйма.
Кстати, если кто-то думает, что резьба 2 дюйма в 2 раза больше резьбы один дюйм, он сильно ошибается. Хер там.
1 дюймовая -33,25
2 дюймовая - 59,61
Ааа! Мне даже интернет и линейка не помогает. Беру 1/2" и 3/8". Неподходящее возвращаю. Дебилизм какой-то. А эти насадки на отвëртки? Мне 3/8" или 13/32"?
Задорнов.жпг
О! Знакомое от бати имя!
"Заснул на посту - сыграл на руку Макнамаре!"
Спасибо, что напомнил. Заодно загуглил, кто такой этот Макнамара.
До этого не знал, если честно.
надзор »
История о том, как проблемы с математикой погубили большой бургер.
Вот уже несколько десятилетий одним из самых популярных блюд в меню McDonald’s является Quarter Pounder (четвертьфунтовый бургер).
И хотя число потребителей неуклонно растёт с тех пор, как появился первый бургер, каждая попытка увеличить его размеры терпит неудачу из-за человеческой глупости.
Quarter Pounder был изобретён, когда владелец франшизы McDonald’s по имени Эл Бернардин заметил, что стандартный гамбургер McDonald’s обладает «ужасным соотношением мяса к булочке».
Бернардин решил эту проблему, разработав новую котлету для ресторана, которая содержала целую четверть фунта говядины.
Он поместил её между двумя частями булочки и добавил в меню под названием Quarter Pounder. Данная идея может показаться вам неоригинальной.
Однако компания McDonald’s умудрилась запатентовать термин “Quarter Pounder” (четвертьфунтовый бургер) и может подать в суд на любого, кто решит им воспользоваться.
Следует уточнить, что хотя Mcdonald's и владеет термином “Quarter Pounder”, эта идея не принадлежит ей. Любой ресторан может сделать бургер с котлетой весом четверть фунта, однако он не имеет права называть его Quarter Pounder, если только не пожелает иметь дело с Mcdonald's.
Многие компании пытались создать собственную версию Quarter Pounder с разными результатами, и есть те, кто попытался превзойти его и потерпел неудачу.
Многочисленные конкуренты – и даже сама компания Mcdonald's – пытались создать бургер с котлетой, которая весила бы 1/3 фунта, однако конечный продукт всегда с треском проваливался.
Например, в 1980-х годах A&W попыталась превзойти Mcdonald's, выпустив A&W Third Pounder.
Все понимали, что бургер был разработан, чтобы стать непосредственным конкурентом Quarter Pounder. A&W продавал его по той же цене, что и четвертьфунтовый, а в некоторых местах он стоил ещё дешевле.
Кроме того, A&W провела много тестов, которые почти все подтвердили, что среднестатистический человек с улицы предпочитает их бургеры. Однако A&W Third Pounder всё равно не продавался. Компания не могла понять, почему никто не хочет покупать его.
Тогда она заказала десятки тестов, чтобы узнать, что, чёрт возьми, происходит, и была сбита с толку, обнаружив, что все считали гамбургер A&W Third Pounder меньше Quarter Pounder.
Клиенты почему-то думали, что если 3 меньше 4, значит, и сам бургер был меньшего размера.
Следовательно, цена казалась им невыгодной.
Если вы ещё не утратили веру в человечество и надеетесь, что таких было меньшинство, что ж, спешим вас огорчить: согласно отчётам тех, кто проводил тесты, более 50% респондентов считали, что 1/3 меньше 1/4.
Вскоре после этого A&W убрала бургер из меню, очевидно, потому, что руководители не смогли найти способ убедить клиентов, что Third Pounder был больше, чем Quarter Pounder, и не назвать их тупыми.
Но на этом история не заканчивается. McDonald’s несколько раз пыталась ввести бургер с котлетой весом 1/3 фунта, но каждый раз терпела неудачу по той же самой причине.
Удивительно!