"мирный наш советский трактор..."
habr.com Возможно, вы помните, что мы говорили про то, как можно сильно улучшить работу обычного сельскохозяйственного комбайна, если использовать нейросетки для распознавания культур и препятствий и робота для автопилотирования. Всё это (кроме процессоров Nvidia и ещё части железа) — наша разработка. А радость в том, что в некоторых южных регионах страны закончилась уборочная страда, и наши комбайны показали себя лучше, чем ожидалось. Слава роботам!
В этом году мы поставили несколько сотен блоков из мощного графического ядра (для нейросетей), камер, гидравлических насосов или CAN-модулей для подруливания. Если в прошлом году агропилоты были в опытной эксплуатации, то сейчас речь идёт уже про серийные модели. И они справились.
Более того, они справились лучше, чем мы ждали. Кроме того, в релиз вошли далеко не все фичи. В релизе осталось, по сути, ядро, но одно только это позволило получить очень заметный экономический эффект.
Конечно, обошлось не без сюрпризов. Но давайте расскажу более конкретно, с числами и примерами.
[censored]
Можно разглядеть камеру 2 Мп сверху. NVIDIA TX2 в специальном кожухе и с огромным радиатором монтируется внизу в подкабинном пространстве. Экран — в кабине.
[censored]
О чём идёт речь
Сельскохозяйственный комбайн по сложности управления похож на церковный орган. Когда в кабине — комбайнёр и помощник, то один рулит (держит кромку), а второй управляет мотовилом, ветрами, барабанами и вообще следит за сбором. Третий в это время может делать отгрузку на ходу в грузовик, едущий рядом. Четвёртый следит за препятствиями. В эпоху СССР в кабине было двое, потом остался один. В итоге он или рулит, или собирает зерно нормально. Стоя на месте, собирать зерно нормально не выходит, поэтому он рулит. Про то, как там всё хитро закручено и почему комбайны регулярно перемалывают людей, врезаются в тракторы и бегущие через поле столбы ЛЭП, — наш первый пост.
Вторая особенность — каждая из ролей, даже если выполнять её не отрываясь, очень монотонная и требует постоянной бдительности. Это как смотреть на трассу 10 часов в день при условии, что нужно поймать буквально два момента за сутки, когда нужна быстрая реакция.
Третья особенность — комбайнёры часто предпочитают убирать быстрее с меньшим КПД (поскольку оплата идёт за отгруженные тонны), а не получать максимум зерна с гектара.
В серию вошли фичи удержания кромки (комбайн сам следит за тем, как едет, и сам рулит) и предотвращения столкновений (комбайн внимательно смотрит по сторонам и прогнозирует движение всего, что видит, — от людей до тракторов). Тут наработки беспилотного трамвая после езды вокруг ВДНХ очень пригодились. В поле куда спокойнее с препятствиями. Про видеоаналитику есть вот[censored] .
[censored]
Отдельное подразделение занимается обучением нейросетей (фотографированием ситуаций и разметкой данных), чтобы определять, где какая культура, как выглядит полёгшая пшеница и так далее. Поскольку обучающих выборок нет, мы ездим в поля и снимаем сами. Это важно, потому что одна и та же культура от сорта к сорту и от климата к климату отличается визуально.
[censored]
Ещё одно подразделение занимается разработкой железа. У нас есть радар собственной разработки для тепловозов и трамваев, но на комбайне — только камеры, потому что оснащать их нужно как можно дешевле. Сложная история — это разбор протоколов управления (иногда утерянных вместе с производителем, и тогда нужно реверсить) или же установка гидравлики для подмешивания нашего сигнала в руление. Вычислительные модули на каждом комбайне автономные.
[censored]