Резистентных бактерий победили старыми антибиотиками

nplus1.ru — с помощью света. Биологи из Колорадского университета в Боулдере научились повышать эффективность антибиотиков за счет наночастиц, ослабляющих бактериальные клетки. Наночастицы, активируемые с помощью света, инициировали в клетках синтез активных форм кислорода и запускали ответную реакцию клеточной защиты.
Новости, Наука | tazuja 14:21 09.10.2017
5 комментариев | 50 за, 0 против |
#1 | 14:22 09.10.2017 | Кому: Всем
После такой обработки резистентные к антибиотикам бактерии начинали реагировать на них гораздо сильнее, причем в некоторых случаях эффект действия лекарств повышался в тысячу раз. Исследование[censored] в Science Advances.

Антибиотики — эффективное средство борьбы с бактериальными возбудителями заболеваний, однако бактерии эволюционируют с огромной скоростью, адаптируясь к самым разным веществам, и ученым приходиться изобретать все новые и новые лекарства или даже классы лекарств. Постоянно возникают, в том числе, штаммы бактерий, резистентных к широкому спектру веществ (MDR, multiple drug resistant), представляющие собой особенную опасность для хозяйских организмов.

Известно, что АФК (активные формы кислорода) играют роль в процессе взаимодействия бактерий и антибиотиков, однако до сих пор детали этой роли были не вполне ясны. АФК присутствуют в клетке всегда, однако при избыточной их концентрации включается антиоксидантные механизмы клеточной защиты, поскольку АФК могут влиять на структуру ДНК, а также на нарушать работу металлсодержащих ферментов. Известно, что при делеции генов, ответственных за подавление синтеза пероксидов и супероксидов, восприимчивость к антибиотикам у бактерий повышается. Исследователи решили подробнее изучить это явление, искусственным образом повышая концентрацию АФК в бактериальных клетках.

В рамках данного проекта ученые работали с резистентными штаммами трех видов бактерий - Escherichia coli, Salmonella enterica и Klebsiella pneumoniae. В клетки вводили наночастицы, сделанные из теллурида кадмия — полупроводникового материала, которые можно было контролировать, активируя в нужный момент с помощью света с определенной длиной волны и генерируя при этом строго заданный потенциал. В результате наночастицы испускали электроны, которые, в свою очередь, создавали в клетке из кислорода необходимые АФК — супероксиды (радикалы *O2—). Супероксиды обладают сравнительно длительным временем жизни и значительным потенциалом действия. Разрушая сульфидные мостики в металлсодержащих белках, супероксиды способны создавать поток ионов железа в клетке. Ионы железа локализуются в ДНК, белках и липидах и инициируют реакцию Фентона.

Это оказалось эффективным способом ослабления бактериальных клеток перед обработкой антибиотиками. В 75 процентах разных протестированных комбинаций «АФК+антибиотик» ослабленные действием АФК бактерии значительно сильнее реагировали даже на «старые и знакомые» антибиотики, причем как на бактерицидные вещества (цефтриаксон, ципрофлоксацин и стрептомицин), так и на бактериостатины (клиндамицин и хлорамфеникол). При определенных концентрациях эффективность лекарства при этом повышалась до 1000 раз.

Помимо культур клеток, методика была также протестирована на живых организмах - нематодах Caenorhabditis elegans. Выяснилось, что комбинированная терапия позволяет выжить примерно на 20 процентов большему количеству нематод, кишечная микрофлора которых поражена MDR бактериями, по сравнению с нематодами, получившими только антибиотик.

Ученые рассчитали глубину кожи человека, с которой можно работать, пользуясь данной методикой, и определили ее как 1-2 сантиметра. Именно на такую глубину свет от зеленых светодиодов, необходимый для активации наночастиц, будет проникать с достаточной эффективностью. Таким образом, полагают они, на данный момент подобная методика может быть применена для лечения кожных инфекций и ожогов. Ученые особенно подчеркивают важность подобных разработок для борьбы с внутриклеточными паразитами, такими, как различные виды Salmonella, поскольку наночастицы достаточно малы и подвижны, чтобы проникать сначала внутрь хозяйских, а затем внутрь бактериальных клеток.

А посмотреть на 3D-структуру машин, с помощью которых бактерии обороняются от антибиотиков, можно[censored] .
#2 | 14:25 09.10.2017 | Кому: Всем
Вот все изобретают, изобретают, а когда это уже в народ пойдет? Я заипалась у кота гемолитичную эшхерию коли гонять. Типа условно-патогенная, хер выбьешь.
#3 | 17:08 09.10.2017 | Кому: Всем
Прямо как рекомендация по травле мышей волшебным порошком от Хаджи Насреддина:

Поймайте мышь
Всыпьте ей в рот порошок
...
Профит!
#4 | 17:57 09.10.2017 | Кому: Всем
Внутре организма? Кадмий, свободные радикалы и бета-излучние? Может просто в морг, без спецэффектов?
#5 | 19:42 09.10.2017 | Кому: cyan__
а химиотерапия, лучевая терапия не смущают? и это все давно используют для сохранения жизни пациентов.
Войдите или зарегистрируйтесь чтобы писать комментарии.